Subject to constraints

$$3x_1 + x_2 \ge 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \ge 3$$
 and

$$x_1, x_2 \ge 0.$$

Solve the transportation problem with unit transportation costs in rupees, demands and supplies as given below.

Destination

Supply (units) D_1 D_2 D_3 100 10 75 Origin 50 D 75 6 10 70 . 80 Demand (units) 120

23. Solve the following sequencing problem giving the optimal solution if passing is not allowed.

Machines

		MIGGI	111100		
		M_1	M_2	M_3	M_4
1,299	A	13	. 8	7	14
Jobs	В	12	6	8	19
	C	9	7	8	15
	D	8	5	6	15

What are the advantages and disadvantages of Monte Carlo simulation?

51311/SAZ5C

BCA

APRIL 2019

51311/SAZ5C

Time: Three hours

Maximum: 75 marks

SECTION A — $(10 \times 2 = 20 \text{ marks})$

Answer any TEN questions.

- What are the applications of operation research?
- Define surplus variables. 2.
- Define slack variables. 3.
- Write any two disadvantage of Big-M method over two-phase method.
- Define transportation problem.
- Define optimal solution. 6:
- Write the difference between transportation problem and assignment problem.
- Defines sequencing problem. 8.
- Define idle time. 9.
- Define saddle point.
- Define dummy activity. . 11.
- 12. Define simulation with examples.

Re source Management Techniques.

SECTION B — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

13. Express the following LP problem in standard form

Minimize $z = 5x_1 + 7x_2$

Subject to constraints.

$$x_1 + x_2 \le 8$$

$$3x_1 + 4x_2 \ge 3$$

$$6x_1 + 7x_2 \ge 5$$

and $x_1, x_2 \geq 0$.

- 14. Write the advantage of linear programming.
- 15. Write an algorithm for two-phase method.
- 16. Find the initial basic feasible solution for the following transportation problem by VAM.

Distribution centres

Availability

		D_1	D_2	D_3	D_4		
	S_1	11	13	17	14	250	
Origin	S_2	16	18	14	10	300	
	S_3	21	24	13	10	400	
Requirements		200	225	275	250		

17. Find the sequence that minimizes the total elapsed time required to complete the following jobs on machines, M_1, M_2 and M_3 in the order M_1, M_2, M_3 .

Task	Α	В	Ç	D	E	F
M_1	8	3	7	2	5	1
M_2	3	4	5	2	1	6
M_3	8	7	6	9	10	9

- 18. Write an algorithmic steps for processing of twojobs on n-machines.
- 19. Suppose that the sales of a particular item per day is Poisson with mean 5, then generate 20 days of sales by Monte-Carlo method.

SECTION C —
$$(3 \times 10 = 30 \text{ marks})$$

Answer any THREE questions.

20. Solve the following LP problem by the graphical method.

Minimize $z = 3x_1 + 5x_2$

Subject to constraints:

$$-3x_1 + 4x_2 \le 12$$

$$x_1 \leq 4$$

$$2x_1 - x_2 \ge -2$$

$$x_2 \ge 2$$

$$2x_1 + 3x_2 \ge 12$$
 and $x_1, x_2 \ge 0$.