Time: Three hours

Maximum: 75 marks

PART A - (10 × 2 = 20 marks)

Answer any TEN questions.

- 1. Solve the equation $x^4 4x^2 + 8x + 35 = 0$ give that $2 + i\sqrt{3}$ is a root of it.
- 2. Form the equation with rational coefficients, whose roots are $1 + \sqrt{2}$,3.
- 3. Solve the equation $x^3 12x^2 + 39x 28 = 0$, whose roots are in arithmetical progression.
- 4. Define Eigen values and Eigen vectors.
- 5. State Cayley-Hamilton theorem.
- 6. Find the Eigen values of Matrix $\begin{bmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{bmatrix}$
- 7. Expand $\sin^7 \theta$ in a series of sines of Multiples of θ .
- 8. Relations between hyperbolic functions of $\cosh^2 x = \sinh^2 x$.

9. Evaluate
$$\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} (x + y + z) dx dy dz$$
.

10. Evaluate
$$\int_{0}^{3} \int_{1}^{2} xy(x+y) dy dx$$
.

- 11. Define odd functions with example.
- 12. Define Fourier series.

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer any FIVE questions.

- 13. Solve the equation $x^4 8x^3 + 14x^2 8x 15 = 0$ given that the sum of two roots is equal to the sum of the other two.
- 14. Find an approximate value of the positive root of the equation $x^3 2x 5 = 0$.
- 15. Calculate A^4 when $A = \begin{bmatrix} -1 & 3 \\ -1 & 4 \end{bmatrix}$.
- 16. Find the Eigen values of Matrix is $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 8 & 1 & 1 \end{bmatrix}$

- 17. Express $\cos 8 \theta$ in terms of $\sin \theta$.
- 18. Evaluate $\iint (x^2 + y^2) dx dy$ over the region for which x, y are each ≥ 0 and $x + y \le 1$.
- 19. Express $f(x) = x(-\pi < x < \pi)$ as a Fourier series with period 2π .

PART C —
$$(3 \times 10 = 30 \text{ marks})$$

Answer any THREE questions.

- 20. Solve the equation $6x^5 + 11x^4 33x^3 33x^2 + 11x + 6 = 0$.
- 21. Diagonalises the matrix $\begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$
- 22. Separate into real and imaginary parts $\tan^{-1}(x+iy)$.
- 23. Evaluate $\iiint xyz \, dx \, dy \, dx$ taken thought the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.
- 24. Express $f(x) = 1/2(\pi x)$ as a Fourier series with period 2π , to be valid in the interval 0 to 2π .