21. Use dual simplex method to solve the LPP:

Minimize $z = 3x_1 + x_2$

Subject to the constraints: $x_1 + x_2 \ge 1$

 $2x_1 + 3x_2 \ge 2$

and $x_1, x_2 \ge 0$

22. Solve the following game graphically.

Player B

- 23. Write an algorithm for Monte-Carlo simulation.
- 24. Find the starting solution in the following transportation problem by Vogel's approximation method. Also obtain the optimum solution:

7 A M	0000		op o.	alli all	i boiumoi
	D_1	D_{2}	D_3	D_4	Supply
S_1	3	7	6	4	5
S_2	2	4	3	2	2
S_3	4	3	8	5.	3
Demand	3	3	2	2	

51311/SAZ5C

III BCA - Pesource

NOVEMBER 2017

51311/SAZ5C

Time: Three hours

Maximum: 75 marks

SECTION A — $(10 \times 2 = 20 \text{ marks})$

Answer any TEN questions.

- 1. What are the essential characteristics of a linear programming model?
- 2. Define slack and surplus variables in LPP.
- 3. What is infeasible solution?
- 4. Write the basic duality theorem.
- 5. Write the statement of fundamental theorem of duality.
- 6. Define transportation problem.
- 7. Write the difference between transportation problem and assignment problem.
- 8. List out the solutions for sequencing problem?
- 9. Define total elapsed time in sequencing problem.
- 10. What is simulation?
- 11. Define simulated sampling method.
- 12. What are the elements of simulation model?

Management Techniques

SECTION B — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

13. Use the graphical method to solve the following LPP:

Maximize: $z = 6x_1 + x_2$

Subject to the constraints: $2x_1 + x_2 \ge 3$

 $x_2 - x_1 \ge 0$

and $x_1, x_2 \ge 0$

Use two-phase simplex method to solve the following LPP:

Maximize $z = 5x_1 + 3x_2$

Subject to the constraints: $2x_1 + x_2 \ge 1$

 $x_1 + 4x_2 \ge 6$

and $x_1, x_2 \ge 0$

- Write an algorithm for Big M method.
- Obtain an initial basic feasible solution to the following transportation problem using the North-West Corner rule.

	D	E.	F	G	Available
A	11	13	17	14	250
В	16	18	14	10	300
C	21	24	13	10	400

Requirement 200 225 275 250

17. Write the rules of network construction.

51311/SAZ5C

Using graphical method, calculate the minimum time needed to process job 1 and 2 on five machines A, B, C, D and E, (i.e) for each machine find the job which should be done first. Also calculate the total time needed to complete both iobs.

> Sequence: Job 1 Time (hours): 6 8 4 12 4

Sequence: Job 2 Time (hours): 10 8 6 4 12

Use graphical method to solve the LPP:

Maximize $z = 2x_1 + 4x_2$

Subject to the constraints: $x_1 + 2x_2 \le 5$

 $x_1 + x_2 \le 4$

and $x_1, x_2 \ge 0$

SECTION C — $(3 \times 10 = 30 \text{ marks})$

Answer any THREE questions.

Use simplex method to solve the following LPP:

Maximize $z = 3x_1 + 5x_2 + 4x_3$

Subject to the constraints:

 $2x_1 + 3x_2 \le 8$

 $2x_2 + 5x_3 \le 10$

 $3x_1 + 2x_2 + 4x_3 \le 15$

and $x_1, x_2, x_3 \ge 0$