NOVEMBER 2024

53504/220C3A/ 226C3A/227C3A

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 2 = 20 \text{ marks})$

Answer any TEN questions.

- 1. Define: "Data Structure".
- 2. What are the applications of arrays?
- 3. Write a note on linear list.
- 4. Show the operations of queues.
- 5. Mention the "Node" in a linked list.
- 6. Define the term "Heap".
- 7. Write an algorithm to insert an element into a circular queue.
- 8. Give the two applications of graph.
- 9. What is a Binary Tree? Give an example.
- 10. Draw a complete graph with four vertices.
- 11. Define: "Directed Graph".
- 12. What are minimal spanning trees?

PART B —
$$(5 \times 5 = 25 \text{ marks})$$

Answer any FIVE questions.

- 13. Summarize the representation of sparse matrix.
- 14. What are the searching operations of double linked list? Explain.
- 15. Write a procedure to convert infix to postfix conversion with example.
- 16. Describe the linked representations of stack.
- 17. Elaborate the binary search trees in arrays.
- 18. Determine the representation of graphs.
- 19. Write an algorithm for breadth first traversal with example.

PART C —
$$(3 \times 10 = 30 \text{ marks})$$

Answer any THREE questions.

- 20. Outline the algorithm of insertion and deletion in singly linked list.
- 21. Discuss the implementation of circular linked list.

- 22. Illustrate the inorder and preorder of binary tree traversals.
- 23. Develop an algorithm for AVL trees with example.
- 24. Compare and construct the prim's and kruskal's algorithms with examples.