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Abstract— Software is continuously evolving and hence it is 

essential for the production of quality and stable software by 

every software provider. Recently there is a paradigm shift in 

how software is designed. One of the biggest challenges of 

software engineering is predicting defects in software modules, 

to save quality testing time. As software development 

challenges and constraints rise, unexpected effects such as 

failure and errors decrease the consistency of software and 

user loyalty, rendering error-free software more complex and 

frustrating. In this paper, we analyze the use of Multi-Layer 

Perceptron Neural Network [5] (MLP-NN) for the efficient 

prediction of defects. We have also executed the MLP-NN with 

a subset of features selected using popular feature selection 

methods.  The model was evaluated on 5 datasets from the 

AEEEM dataset. The results were compared with other 

common classifiers like Logistic Regression, MLP-NN, and 

Random Tree. The findings indicate that feature selection has 

a major role in increasing the accuracy of prediction. Our 

model had higher accuracy in few cases while at par with 

others in some. 

Keywords - defect prediction, bug metrics, defects, multilayer 

perceptron, neural networks, feature selection, regression, 

random tree. 

I. INTRODUCTION 

The Software testing industry is currently undergoing a 
plethora of changes as the software keeps evolving 
continuously. Software is becoming more and more 
complex every day.   Software testing, which was once a 
distinct phase, has now become an inevitable part of the 
Software Development Life Cycle. The earlier the faults are 
discovered, the lesser is the cost of repairing them. Many 
researchers in the past have attributed the failure of the 
software to the lack of adequate testing. A better 
relationship between testing and requirements was laid 
down as a prerequisite for better-quality software [1], 
leading to the establishment of test methods [2].  

 
The method of identifying defective modules in software is 
Software Defect Prediction (SDP). Common methods for 
detecting faults include code analysis, device checking, 
integration testing, and machine testing. Early identification 
of defective components of the software helps verification 
practitioners to focus on the problematic areas in the 
software framework being built. According to [3], the 
defects are classified into five categories based on the phase 
in which they are detected. Customer needs which are 
described vaguely, prerequisites mentioned partially and 
misinterpreted requirements are some of the reasons for 
bugs in the requirements phase. Design phase bugs include 

sub-optimal design, missing design artifacts, etc. Lack of 
technical expertise, incomplete code review, and coding 
errors contribute to a majority of defects. Apart from these, 
inadequate testing and duration slippages also contribute to 
defective software. 
  
Many researchers have used classification methods for 
predicting defects in software. Some of the most widely 
used techniques include Naïve Bayes, J48, C4.5, KNN, 
Multiple Linear Regression, Support Vector Machines, etc 
[4]. 
Multilayer Perceptron Neural Network [5] (MLP-NN) is one 
of the most powerful models in this area. In learning 
databases, multiple learning approaches suffer from over-
matching. In this paper, an MLP-NN is used along with 
feature selection methods in predicting software 
vulnerabilities. It strengthens the learning algorithm’s 
capability to generalise.  

 
Computer applications have grown more and more 
sophisticated with the advancement of computing 
technologies, and there are many limitations in the life cycle 
development of software due to insufficient human ability. 
Relevant shortcomings are unavoidable, pending precise 
preparation, acceptable documentation, and product creation 
management systems are a few. A bug, fault, problem, 
mistake, or malfunction in a computer program is a software 
flaw. In this way, an erroneous or unintended outcome can 
be induced by the device. The identification of the mistakes 
that exist inside the codes is critical because it directly leads 
to cost savings and enhancement of software quality. 
Studies reveal that only in certain program modules the 
problem is identified. Such defects can lead to failure of the 
program, diminished customer satisfaction, or increased 
maintenance costs. Models for error prediction have been a 
common tool for early coding error detection.  

 
The main focus of this paper is to evaluate the existing 
classifiers namely Random tree, Logistic Regression, and 
Multilayer Perceptron in their efficiency in predicting 
software defects. Our main objectives include: 
 

• Minimizing the number of selected features for the 
classifier, and 

• Maximizing the performance of the SDP model 
 
We propose a model which combines feature selection with 
MLP-NN (MLP+FS). We evaluate the above-mentioned 
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classifiers and the proposed model using open-source defect 
datasets obtained from AEEEM. 
 
The rest of the paper contains five sections. Section II 
presents the work of other researchers in this area. Section 
III and IV describes the approach adopted in this paper and 
the experimental setup. Section V presents the results of the 
experiment and future work in this area. 

 

II. RELATED WORK 

 
A modern approach is recommended to overcome the 
current challenges by designing new learning approaches 
based on the concepts of the help vector machine by using 
evolutionary methods. The approach suggested avoids 
distortion of the topic and raises the margin of classification. 
Within 3 NASA libraries, the performance of the proposed 
algorithm was tested against 11 machine learning models 
and statistical methods [5].  

 
Among product quality testers and practitioners, forecasting 
inaccurate software modules is of great concern. As a result, 
numerous attempts have been made using multiple 
approaches to predict machine errors. The paper uses 
hierarchical clustering strategy, k-NN, and Neural Network 
to identify program components as dysfunctional or 
vulnerable [19]. In the neural network approach, efficiency 
has been found to be higher compared to the clustering-
based approach. A comparison of approaches for detecting 
faulty modules was done to find the best suitable model for 
predicting software defects. The study says that the choice 
of the right algorithm for data mining depends on multiple 
variables, such as the problem area, the dataset type, the 
scope of the project, and the dataset instability [6]. 

 
The use of approaches likes classification, prediction, 
clustering, and association rules to forecast sensitive blocks 
in the program is another approach to defect prediction. 
Researchers have recently begun investigating machine 
learning strategies to forecast the consistency of applications 
in addition to the data mining techniques mentioned above. 
Methods for integrating machine learning and mathematical 
methods have also been explored by researchers. In reality, 
machine learning approaches have been illustrated for 
poorly understood problem domains with evolving 
circumstances dependent on various principles and 
regulations. Since the problems in software can be classified 
into the learning and categorizing according to the defect 
characteristics, to evaluate the defects, traditional machine 
learning approaches are valid. Machine learning methods 
are based on neural networks, non-linear advanced 
simulation techniques that can simulate functions that are 
complex. The main purpose of this work was to explore the 
use of Multilayer Perceptron Neural Network [5] (MLP-
NN) to model the error-proneness of the software systems, 
using the datasets from NASA MDP. Different algorithms 
were compared based on the RMSE and other accuracy 
values [7]. 

 
A review of the general machine error prediction paradigm 
that facilitates unbiased and rigorous analysis between 

competing forecasting systems is presented in this paper. 
The findings indicate that for different datasets, multiple 
learning programs need to be chosen (i.e., no program is 
dominated). Since most errors are found in certain modules, 
it is important to ask about modules that are badly affected 
relative to other modules, and proper maintenance, 
especially for sensitive applications, should be conducted 
promptly. Comparative software is a statistical research 
application that is used to compare more than 22 taxonomies 
from the NASA Matrix database across 10 public domain 
datasets. Using metric-based grouping, high predictive 
precision is observed in the STP experiment. Artificial 
immune system developed for defect prognosis dependent 
on the human immune system [5]. 

 
The suggested grouping follows the action of antigens and 
antibodies in the human biological system as pathogens 
attack. The immune system's evolution of new threats is 
intended to overcome the issue of the prediction of software 
defects in four separate real-time network vulnerability 
datasets, multiple software vulnerability prediction models. 
The findings suggest that, compared to other models with a 
consistency-based subgroup evaluation strategy, the 
combination of 1R and event-based learning provides 
comparatively improved consistency in precision prediction. 
One of the most sought-after data mining problems in the 
database world lately is classification. Coding classification 
rules were diagnosed using neural networks by the 
researcher [8]. 

 
Machine learning models to predict defective software 
modules were used by several researchers in the past. Some 
related studies are discussed here. In, Deep Neural Network 
model, the researchers proposed a hybrid model of genetic 
algorithm for effective defect prediction in software. The 
purpose of the hybrid genetic algorithm is to select the 
optimal features and to predict that the deep neural network 
modules are defective and flawless. Databases from the 
PROMISE repository are used for experiments. The results 
shows the high efficiency of the proposed model as 
compared to others. In this paper, the researchers elaborated 
on the importance of the feature selection process in the 
software defect prediction process [9]. 

 
This test was performed using NASA databases including 
PC1, CM1, KC1, and KC3. Experimental results of Logistic 
regression (LR), k-nearest neighbor (k-NN), end trees, 
Multilayer Perceptron (MLP), Bayesian networks, radial 
base function (RBF), Random Forest (RF), and now Naïve 
Base, (NB) [10]. The results reflected that the performance 
of the SVM surpassed some other classification methods. In 
this paper, the researchers predicted software defects using 
six classification methods: Discrimination Analysis, 
Primary Equipment Analysis (PCA), Logistic Regression 
(LR), Logical Classification, Holographic Networks, and 
Layered Neural Networks [10]. To train the ANN model, a 
back-propagation algorithm was used. The performance was 
evaluated using verification cost, forecast validity, the 
quality achieved, and incorrect classification ratio. 
According to the results, none of the classification 
techniques used was done with 100% accuracy [11]. 
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The framework proposed in this paper used two dimensions: 
feature selection and without feature selection. 12 publicly 
available NASA MDP databases are used to implement the 
proposed framework. Performance is evaluated using a 
variety of measures including accuracy, recall, f-
measurement, accuracy, MCC, and ROC. The results are 
comparable to well-known and widely used supervised 
machine learning techniques, such as: “Naïve Bayes (NB), 
Multi-Layer Perceptron (MLP), Radial Basis Function 
(RBF), Support Vector Machine (SVM), K Nearest 
Neighbor (kNN), k-Star (K*), One Rule (OneR), PART, 
Decision Tree (DT), Random Tree (RT) and Random Forest 
(RF)” [10]. The results showed that the proposed structure 
works better than other classification techniques in some 
datasets. Twelve publicly available NASA MDP databases 
are used for this test and performance is evaluated based on 
accuracy, recall, F-measurement, accuracy, MCC and ROC 
area [12]. 

III. BACKGROUND 

A. Software Metrics 

Software metrics play a major role in analyzing the 
performance of a software.  Metrics for analyzing software 
can include basics like the total lines of code, number of 
packages in the code, number of classes and interfaces, 
number of overridden methods, count of parameters and 
static fields, etc [12].  The complexity of the code can be 
measured using metrics like McCabe’s cyclomatic 
complexity, level of nesting, count of lines of code in 
methods, etc. While testing object-oriented software, the role 
of class-level object-oriented metrics plays a vital role in 
uncovering defects. Chidamber and Kemerer, six metrics, 
namely WMC, DIT, NOC, RFC, CBO, and LCOM [13]. 
These metrics measure the number of weighted methods per 
class, the depth of the inheritance tree, the number of 
children. They also consider the degree of coupling and lack 
of cohesion between objects and the response set of a class 
[13]. The AEEEM dataset has a total of 61 metrics from five 
Eclipse-based projects namely EQ, JDT, Lucene, Mylyn, and 

PDE [18].  

B. Multi-layer Perceptron Neural Network 

A Multi-layer neural network [5] is an artificial neural 
network with more than one hidden layer. As the number of 
the hidden layer is increased, the accuracy of the 
classification will be benefitted. Each layer has a different 
number of neurons, different activation functions, and so on. 
By varying the parameters, better classification accuracy can 
be achieved. Neural networks are capable of capturing data 
relationships in a precise manner, even those skipped by 
humans.  
 

C. Feature Selection Methods 

Feature Selection [10] is used to reduce the number of 
inputs to a classifier. Several feature selection methods are 
available, based on the kind of learning used. Wrapper 
methods are used to evaluate multiple models to add or 
delete predictors in order to maximize model performance. 
Filter-based methods are used to evaluate the relevance of 
the predictors based on some criteria. A Correlation-based 

feature selection method (CFS) uses a correlation index to 
choose an attribute over the other. Attributes that are highly 
correlated are not selected, as their contribution to the output 
is more or less the same [10].  

 

IV. PROPOSED METHOD 

This research presents a framework for the classification of 
software modules as defective or clean using a Multilayer 
neural network combined with feature selection methods. 
There are four stages in the prediction model. The different 
phases are a selection of dataset, pre-processing the data, 
implementation of various classification methods analysis of 
the results.  

 
The target /output class is the dependent attribute and the 
rest of the attributes are called independent attributes [10]. 
The bias characteristic is predicted based on the independent 
properties. Independent attributes are quality measurements 
of software systems. The target class in the datasets used has 
one of the following values: “clean” or “buggy”. An output 
value of “clean” means that the block of code is not 
defective and “buggy” means defective.  
 The selection of data is the second phase of the proposed 
framework, which includes feature selection and class 
balancing operations [14].  

 
The proposed architecture operates in two dimensions, with 
the first dimension having only the pre-processing stage 
feature selection function. However, in the second 
dimension, along with the feature selection function, a class 
balancing technique is also included [15]. 
  
The class balance technique allows us to analyze the effects 
of unbalanced datasets on the performance of the proposed 
classification structure. The feature selection function aims 
to select the optimal features so that classification results 
can be achieved with greater accuracy. It has been suggested 
by many researchers that only a few independent features in 
many datasets can be used to predict the target class 
effectively [10]. The remaining features which do not 
participate, will reduce the effectiveness of the model if not 
eliminated [16]. 
  
In this research, we have incorporated a collection-based 
multi-filter feature selection technique in which CFS is used 
as an attribute evaluator, and the four most widely used 
search methods are Best Fit and Greedy Search. For each 
dataset used, the feature is selected with all four of these 
search methods. In this process, if any particular feature is 
selected with any search method, that feature is given a 
score of 1, and the same process is repeated with the second 
search method and so on. After activating all search 
methods, the scores of each feature are collected in all 
search methods, and only those features that have at least 1 
accumulated score are selected (this feature is selected by at 
least one search method) [17]. 
 

V. EXPERIMENTAL SETUP 
 
The proposed model is obtained by slightly modifying the 
existing MLP-NN model. Our model has two hidden layers, 
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with 20 neurons in each layer. We have tried different 
activation functions in each iteration and choose the one 
which gave highest accuracy.  Also, the learning rate was 
vari ed in order to achieve maximum possible accuracy.  
A total of 43 metrics were shortlisted for the proposed MLP-
NN by applying CFS feature selection algorithm available in 
WEKA 3.9.5. Two search strategies were implemented, 
namely, best fit and Greedy search. 
 
The dataset was evaluated using classifiers namely Logistic 
Regression (LR) [10], Random Tree (RT) [10], Multi-Layer 
Perceptron (MLP-NN) [5] and our proposed model 
(MLP+FS). The classifier accuracy in each case was 
tabulated.  
 

V. RESULTS AND CONCLUSION  

Tableable 1: Percentage Of Correctly Classified Data 

Classifier EQ JDT Lucene Mylyn PDE 

RT [10] 65.98 76.92 84.54 83.36 80.18 

LR [10] 69.07 84.61 85.99 86.40 87.08 

MLP-NN  70.10 82.00 89.85 87.11 86.19 

MLP+FS  80.00 82.00 89.00 87.00 86.00 

102030

40506070

8090

RT [1 0]LR [1 0]

MLP- NN MLP+ FS  

 

 

Fig 1: Graph of the classifier accuracy values 

Table I shows the accuracy of various classifiers for the 5 
datasets. Figure 1 represents the graph of the data. Figures 2 
to 6 shows the confusion matrix for the classification of the 5 
datasets. The yellow line shows the accuracy of the proposed 
model. The blue and yellow colors show correctly classified 
cases i.e., True Positive (TP) and True Negative (TN) values. 
The purple color shows False Positive (FP) and False 
Negative (FN) values.  

 From the above results, it is evident that the MLP-NN 
was able to classify the data more accurately. Also, our 
proposed model which combines feature selection with 
MLP-NN (MLP+FS) was able to achieve a similar accuracy 
rate. It clearly shows that selecting a subset of features based 
on correlation will not only reduce the dimensions of the 
input but also improve the accuracy of the classification.  

 

 

Fig 2: Precision-Recall Curve and Confusion Matrix for our Proposed 
method (EQ) 

 

Fig 3: Precision-Recall Curve and Confusion Matrix our Proposed 
method (JDT) 

 

 

Fig 4: Precision-Recall Curve and Confusion Matrix for our Proposed 
method (Lucene) 

 

 

Fig 5: Precision-Recall Curve and Confusion Matrix for our Proposed 
method (Mylyn) 

 

 

Fig 6: Precision-Recall Curve and Confusion Matrix for our Proposed 
method (PDE) 

However, the proposed method for better testing in terms of 
performance consistency should be evaluated along with 
other data sets. In conclusion, the MLP model combined 
with feature selection offers a better solution for predicting 
errors in software modules. This research provided a multi-
filter feature selection-based classification framework for 
software defect prediction. For defect prediction, the 
structure uses a synthetic neural network (MLP). 
Oversampling technique is also used in the structure to 
analyze the effect of the class inequality problem on 
classification performance. For testing, 5 datasets from 
AEEEM namely EQ, JDT, Lucene, Mylyn and PDE was 
used. We need to further why the class balancing technique 
has reduced accuracy while other measures have been 
significantly improved in most databases. Our future work 
will include evaluating our model with more datasets like 
JIRA, PROMISE and NASA MDP. We also aim at 
maximizing the accuracy of the prediction done by our 
model. 
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