
2021 2nd International Conference on Intelligent Engineering and Management (ICIEM)

228
978-1-6654-1450-0/21/$31.00 ©2021 IEEE

Multi-Layer Perceptron Neural Network with
Feature Selection for Software Defect Prediction

J. Mary Catherine
Department of Computer Science

Chevalier T Thomas Elizabeth College for Women

Chennai, India
catherine_vinod@yahoo.co.in

S Djodilatchoumy
Department of Computer Science and Applications

Pachaiyappa’s College

Chennai, India
djodilatchoumy@hotmail.com

Abstract— Software is continuously evolving and hence it is

essential for the production of quality and stable software by

every software provider. Recently there is a paradigm shift in

how software is designed. One of the biggest challenges of

software engineering is predicting defects in software modules,

to save quality testing time. As software development

challenges and constraints rise, unexpected effects such as

failure and errors decrease the consistency of software and

user loyalty, rendering error-free software more complex and

frustrating. In this paper, we analyze the use of Multi-Layer

Perceptron Neural Network [5] (MLP-NN) for the efficient

prediction of defects. We have also executed the MLP-NN with

a subset of features selected using popular feature selection

methods. The model was evaluated on 5 datasets from the

AEEEM dataset. The results were compared with other

common classifiers like Logistic Regression, MLP-NN, and

Random Tree. The findings indicate that feature selection has

a major role in increasing the accuracy of prediction. Our

model had higher accuracy in few cases while at par with

others in some.

Keywords - defect prediction, bug metrics, defects, multilayer

perceptron, neural networks, feature selection, regression,

random tree.

I. INTRODUCTION

The Software testing industry is currently undergoing a
plethora of changes as the software keeps evolving
continuously. Software is becoming more and more
complex every day. Software testing, which was once a
distinct phase, has now become an inevitable part of the
Software Development Life Cycle. The earlier the faults are
discovered, the lesser is the cost of repairing them. Many
researchers in the past have attributed the failure of the
software to the lack of adequate testing. A better
relationship between testing and requirements was laid
down as a prerequisite for better-quality software [1],
leading to the establishment of test methods [2].

The method of identifying defective modules in software is
Software Defect Prediction (SDP). Common methods for
detecting faults include code analysis, device checking,
integration testing, and machine testing. Early identification
of defective components of the software helps verification
practitioners to focus on the problematic areas in the
software framework being built. According to [3], the
defects are classified into five categories based on the phase
in which they are detected. Customer needs which are
described vaguely, prerequisites mentioned partially and
misinterpreted requirements are some of the reasons for
bugs in the requirements phase. Design phase bugs include

sub-optimal design, missing design artifacts, etc. Lack of
technical expertise, incomplete code review, and coding
errors contribute to a majority of defects. Apart from these,
inadequate testing and duration slippages also contribute to
defective software.

Many researchers have used classification methods for
predicting defects in software. Some of the most widely
used techniques include Naïve Bayes, J48, C4.5, KNN,
Multiple Linear Regression, Support Vector Machines, etc
[4].
Multilayer Perceptron Neural Network [5] (MLP-NN) is one
of the most powerful models in this area. In learning
databases, multiple learning approaches suffer from over-
matching. In this paper, an MLP-NN is used along with
feature selection methods in predicting software
vulnerabilities. It strengthens the learning algorithm’s
capability to generalise.

Computer applications have grown more and more
sophisticated with the advancement of computing
technologies, and there are many limitations in the life cycle
development of software due to insufficient human ability.
Relevant shortcomings are unavoidable, pending precise
preparation, acceptable documentation, and product creation
management systems are a few. A bug, fault, problem,
mistake, or malfunction in a computer program is a software
flaw. In this way, an erroneous or unintended outcome can
be induced by the device. The identification of the mistakes
that exist inside the codes is critical because it directly leads
to cost savings and enhancement of software quality.
Studies reveal that only in certain program modules the
problem is identified. Such defects can lead to failure of the
program, diminished customer satisfaction, or increased
maintenance costs. Models for error prediction have been a
common tool for early coding error detection.

The main focus of this paper is to evaluate the existing
classifiers namely Random tree, Logistic Regression, and
Multilayer Perceptron in their efficiency in predicting
software defects. Our main objectives include:

• Minimizing the number of selected features for the
classifier, and

• Maximizing the performance of the SDP model

We propose a model which combines feature selection with
MLP-NN (MLP+FS). We evaluate the above-mentioned

20
21

 2
nd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 E
ng

in
ee

rin
g

an
d

M
an

ag
em

en
t (

IC
IE

M
) |

 9
78

-1
-6

65
4-

14
50

-0
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

IE
M

51
51

1.
20

21
.9

44
53

50

Authorized licensed use limited to: California State University Fresno. Downloaded on July 01,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

2021 2nd International Conference on Intelligent Engineering and Management (ICIEM)

229

classifiers and the proposed model using open-source defect
datasets obtained from AEEEM.

The rest of the paper contains five sections. Section II
presents the work of other researchers in this area. Section
III and IV describes the approach adopted in this paper and
the experimental setup. Section V presents the results of the
experiment and future work in this area.

II. RELATED WORK

A modern approach is recommended to overcome the
current challenges by designing new learning approaches
based on the concepts of the help vector machine by using
evolutionary methods. The approach suggested avoids
distortion of the topic and raises the margin of classification.
Within 3 NASA libraries, the performance of the proposed
algorithm was tested against 11 machine learning models
and statistical methods [5].

Among product quality testers and practitioners, forecasting
inaccurate software modules is of great concern. As a result,
numerous attempts have been made using multiple
approaches to predict machine errors. The paper uses
hierarchical clustering strategy, k-NN, and Neural Network
to identify program components as dysfunctional or
vulnerable [19]. In the neural network approach, efficiency
has been found to be higher compared to the clustering-
based approach. A comparison of approaches for detecting
faulty modules was done to find the best suitable model for
predicting software defects. The study says that the choice
of the right algorithm for data mining depends on multiple
variables, such as the problem area, the dataset type, the
scope of the project, and the dataset instability [6].

The use of approaches likes classification, prediction,
clustering, and association rules to forecast sensitive blocks
in the program is another approach to defect prediction.
Researchers have recently begun investigating machine
learning strategies to forecast the consistency of applications
in addition to the data mining techniques mentioned above.
Methods for integrating machine learning and mathematical
methods have also been explored by researchers. In reality,
machine learning approaches have been illustrated for
poorly understood problem domains with evolving
circumstances dependent on various principles and
regulations. Since the problems in software can be classified
into the learning and categorizing according to the defect
characteristics, to evaluate the defects, traditional machine
learning approaches are valid. Machine learning methods
are based on neural networks, non-linear advanced
simulation techniques that can simulate functions that are
complex. The main purpose of this work was to explore the
use of Multilayer Perceptron Neural Network [5] (MLP-
NN) to model the error-proneness of the software systems,
using the datasets from NASA MDP. Different algorithms
were compared based on the RMSE and other accuracy
values [7].

A review of the general machine error prediction paradigm
that facilitates unbiased and rigorous analysis between

competing forecasting systems is presented in this paper.
The findings indicate that for different datasets, multiple
learning programs need to be chosen (i.e., no program is
dominated). Since most errors are found in certain modules,
it is important to ask about modules that are badly affected
relative to other modules, and proper maintenance,
especially for sensitive applications, should be conducted
promptly. Comparative software is a statistical research
application that is used to compare more than 22 taxonomies
from the NASA Matrix database across 10 public domain
datasets. Using metric-based grouping, high predictive
precision is observed in the STP experiment. Artificial
immune system developed for defect prognosis dependent
on the human immune system [5].

The suggested grouping follows the action of antigens and
antibodies in the human biological system as pathogens
attack. The immune system's evolution of new threats is
intended to overcome the issue of the prediction of software
defects in four separate real-time network vulnerability
datasets, multiple software vulnerability prediction models.
The findings suggest that, compared to other models with a
consistency-based subgroup evaluation strategy, the
combination of 1R and event-based learning provides
comparatively improved consistency in precision prediction.
One of the most sought-after data mining problems in the
database world lately is classification. Coding classification
rules were diagnosed using neural networks by the
researcher [8].

Machine learning models to predict defective software
modules were used by several researchers in the past. Some
related studies are discussed here. In, Deep Neural Network
model, the researchers proposed a hybrid model of genetic
algorithm for effective defect prediction in software. The
purpose of the hybrid genetic algorithm is to select the
optimal features and to predict that the deep neural network
modules are defective and flawless. Databases from the
PROMISE repository are used for experiments. The results
shows the high efficiency of the proposed model as
compared to others. In this paper, the researchers elaborated
on the importance of the feature selection process in the
software defect prediction process [9].

This test was performed using NASA databases including
PC1, CM1, KC1, and KC3. Experimental results of Logistic
regression (LR), k-nearest neighbor (k-NN), end trees,
Multilayer Perceptron (MLP), Bayesian networks, radial
base function (RBF), Random Forest (RF), and now Naïve
Base, (NB) [10]. The results reflected that the performance
of the SVM surpassed some other classification methods. In
this paper, the researchers predicted software defects using
six classification methods: Discrimination Analysis,
Primary Equipment Analysis (PCA), Logistic Regression
(LR), Logical Classification, Holographic Networks, and
Layered Neural Networks [10]. To train the ANN model, a
back-propagation algorithm was used. The performance was
evaluated using verification cost, forecast validity, the
quality achieved, and incorrect classification ratio.
According to the results, none of the classification
techniques used was done with 100% accuracy [11].

Authorized licensed use limited to: California State University Fresno. Downloaded on July 01,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

2021 2nd International Conference on Intelligent Engineering and Management (ICIEM)

230

The framework proposed in this paper used two dimensions:
feature selection and without feature selection. 12 publicly
available NASA MDP databases are used to implement the
proposed framework. Performance is evaluated using a
variety of measures including accuracy, recall, f-
measurement, accuracy, MCC, and ROC. The results are
comparable to well-known and widely used supervised
machine learning techniques, such as: “Naïve Bayes (NB),
Multi-Layer Perceptron (MLP), Radial Basis Function
(RBF), Support Vector Machine (SVM), K Nearest
Neighbor (kNN), k-Star (K*), One Rule (OneR), PART,
Decision Tree (DT), Random Tree (RT) and Random Forest
(RF)” [10]. The results showed that the proposed structure
works better than other classification techniques in some
datasets. Twelve publicly available NASA MDP databases
are used for this test and performance is evaluated based on
accuracy, recall, F-measurement, accuracy, MCC and ROC
area [12].

III. BACKGROUND

A. Software Metrics

Software metrics play a major role in analyzing the
performance of a software. Metrics for analyzing software
can include basics like the total lines of code, number of
packages in the code, number of classes and interfaces,
number of overridden methods, count of parameters and
static fields, etc [12]. The complexity of the code can be
measured using metrics like McCabe’s cyclomatic
complexity, level of nesting, count of lines of code in
methods, etc. While testing object-oriented software, the role
of class-level object-oriented metrics plays a vital role in
uncovering defects. Chidamber and Kemerer, six metrics,
namely WMC, DIT, NOC, RFC, CBO, and LCOM [13].
These metrics measure the number of weighted methods per
class, the depth of the inheritance tree, the number of
children. They also consider the degree of coupling and lack
of cohesion between objects and the response set of a class
[13]. The AEEEM dataset has a total of 61 metrics from five
Eclipse-based projects namely EQ, JDT, Lucene, Mylyn, and

PDE [18].

B. Multi-layer Perceptron Neural Network

A Multi-layer neural network [5] is an artificial neural
network with more than one hidden layer. As the number of
the hidden layer is increased, the accuracy of the
classification will be benefitted. Each layer has a different
number of neurons, different activation functions, and so on.
By varying the parameters, better classification accuracy can
be achieved. Neural networks are capable of capturing data
relationships in a precise manner, even those skipped by
humans.

C. Feature Selection Methods

Feature Selection [10] is used to reduce the number of
inputs to a classifier. Several feature selection methods are
available, based on the kind of learning used. Wrapper
methods are used to evaluate multiple models to add or
delete predictors in order to maximize model performance.
Filter-based methods are used to evaluate the relevance of
the predictors based on some criteria. A Correlation-based

feature selection method (CFS) uses a correlation index to
choose an attribute over the other. Attributes that are highly
correlated are not selected, as their contribution to the output
is more or less the same [10].

IV. PROPOSED METHOD

This research presents a framework for the classification of
software modules as defective or clean using a Multilayer
neural network combined with feature selection methods.
There are four stages in the prediction model. The different
phases are a selection of dataset, pre-processing the data,
implementation of various classification methods analysis of
the results.

The target /output class is the dependent attribute and the
rest of the attributes are called independent attributes [10].
The bias characteristic is predicted based on the independent
properties. Independent attributes are quality measurements
of software systems. The target class in the datasets used has
one of the following values: “clean” or “buggy”. An output
value of “clean” means that the block of code is not
defective and “buggy” means defective.
 The selection of data is the second phase of the proposed
framework, which includes feature selection and class
balancing operations [14].

The proposed architecture operates in two dimensions, with
the first dimension having only the pre-processing stage
feature selection function. However, in the second
dimension, along with the feature selection function, a class
balancing technique is also included [15].

The class balance technique allows us to analyze the effects
of unbalanced datasets on the performance of the proposed
classification structure. The feature selection function aims
to select the optimal features so that classification results
can be achieved with greater accuracy. It has been suggested
by many researchers that only a few independent features in
many datasets can be used to predict the target class
effectively [10]. The remaining features which do not
participate, will reduce the effectiveness of the model if not
eliminated [16].

In this research, we have incorporated a collection-based
multi-filter feature selection technique in which CFS is used
as an attribute evaluator, and the four most widely used
search methods are Best Fit and Greedy Search. For each
dataset used, the feature is selected with all four of these
search methods. In this process, if any particular feature is
selected with any search method, that feature is given a
score of 1, and the same process is repeated with the second
search method and so on. After activating all search
methods, the scores of each feature are collected in all
search methods, and only those features that have at least 1
accumulated score are selected (this feature is selected by at
least one search method) [17].

V. EXPERIMENTAL SETUP

The proposed model is obtained by slightly modifying the
existing MLP-NN model. Our model has two hidden layers,

Authorized licensed use limited to: California State University Fresno. Downloaded on July 01,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

2021 2nd International Conference on Intelligent Engineering and Management (ICIEM)

231

with 20 neurons in each layer. We have tried different
activation functions in each iteration and choose the one
which gave highest accuracy. Also, the learning rate was
vari ed in order to achieve maximum possible accuracy.
A total of 43 metrics were shortlisted for the proposed MLP-
NN by applying CFS feature selection algorithm available in
WEKA 3.9.5. Two search strategies were implemented,
namely, best fit and Greedy search.

The dataset was evaluated using classifiers namely Logistic
Regression (LR) [10], Random Tree (RT) [10], Multi-Layer
Perceptron (MLP-NN) [5] and our proposed model
(MLP+FS). The classifier accuracy in each case was
tabulated.

V. RESULTS AND CONCLUSION

Tableable 1: Percentage Of Correctly Classified Data

Classifier EQ JDT Lucene Mylyn PDE

RT [10] 65.98 76.92 84.54 83.36 80.18

LR [10] 69.07 84.61 85.99 86.40 87.08

MLP-NN 70.10 82.00 89.85 87.11 86.19

MLP+FS 80.00 82.00 89.00 87.00 86.00

102030

40506070

8090

RT [1 0]LR [1 0]

MLP- NN MLP+ FS

Fig 1: Graph of the classifier accuracy values

Table I shows the accuracy of various classifiers for the 5
datasets. Figure 1 represents the graph of the data. Figures 2
to 6 shows the confusion matrix for the classification of the 5
datasets. The yellow line shows the accuracy of the proposed
model. The blue and yellow colors show correctly classified
cases i.e., True Positive (TP) and True Negative (TN) values.
The purple color shows False Positive (FP) and False
Negative (FN) values.

 From the above results, it is evident that the MLP-NN
was able to classify the data more accurately. Also, our
proposed model which combines feature selection with
MLP-NN (MLP+FS) was able to achieve a similar accuracy
rate. It clearly shows that selecting a subset of features based
on correlation will not only reduce the dimensions of the
input but also improve the accuracy of the classification.

Fig 2: Precision-Recall Curve and Confusion Matrix for our Proposed
method (EQ)

Fig 3: Precision-Recall Curve and Confusion Matrix our Proposed
method (JDT)

Fig 4: Precision-Recall Curve and Confusion Matrix for our Proposed
method (Lucene)

Fig 5: Precision-Recall Curve and Confusion Matrix for our Proposed
method (Mylyn)

Fig 6: Precision-Recall Curve and Confusion Matrix for our Proposed
method (PDE)

However, the proposed method for better testing in terms of
performance consistency should be evaluated along with
other data sets. In conclusion, the MLP model combined
with feature selection offers a better solution for predicting
errors in software modules. This research provided a multi-
filter feature selection-based classification framework for
software defect prediction. For defect prediction, the
structure uses a synthetic neural network (MLP).
Oversampling technique is also used in the structure to
analyze the effect of the class inequality problem on
classification performance. For testing, 5 datasets from
AEEEM namely EQ, JDT, Lucene, Mylyn and PDE was
used. We need to further why the class balancing technique
has reduced accuracy while other measures have been
significantly improved in most databases. Our future work
will include evaluating our model with more datasets like
JIRA, PROMISE and NASA MDP. We also aim at
maximizing the accuracy of the prediction done by our
model.

VI. REFERENCES

[1] Suresh Jat., Pradeep Sharma., “Analysis of Different Software Testing
Techniques”. International Journal of Scientific Research in
Computer Science and Engineering Vol.5, Issue.2, pp.77-80, April
2017.

[2] Chandraprakash Patidar., “A Report on Latest Software Testing
Techniques and Tools”. International Journal of Scientific Research
in Computer Science and Engineering Vol.1, Issue.4, pp.50-52, Dec
2016.

Authorized licensed use limited to: California State University Fresno. Downloaded on July 01,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

2021 2nd International Conference on Intelligent Engineering and Management (ICIEM)

232

[3] Sakthi Kumaresh and Baskaran Ramachandran, “Defect Prevention
based on 5 Dimensions of Defect Origin”, International Journal of
Software Engineering and Application, Vol 3, 87-98.

[4] Ning Li, Martin Shepperd, Yuchen Guo, “A Systematic Review of
Unsupervised Learning Techniques for Software Defect
Prediction”,Information and Software Technology.

[5] M. Gayathri and A. Sudha, “Software Defect Prediction System using
Multilayer Perceptron Neural Network with Data Mining,” Int. J.
Recent Technol. Eng., no. 32, pp. 2277–3878, 2014.

[6] S. U. Dr. Naheed Azeem, “Analysis of Data mining based Software
Defect Prediction Techniques,” Glob. J. Comput. Sci. Technol., vol.
11, no. 16, 2011, [Online]. Available:
https://computerresearch.org/index.php/computer/article/view/806.

[7] M. C. M. Prasad, L. F. Florence, and A. Arya3, “A Study on Software
Metrics based Software Defect Prediction using Data Mining and
Machine Learning Techniques,” Int. J. Database Theory Appl., vol. 8,
no. 3, pp. 179–190, 2015, doi: 10.14257/ijdta.2015.8.3.15.

[8] A. Iqbal and S. Aftab, “A classification framework for software
defect prediction using multi-filter feature selection technique and
MLP,” Int. J. Mod. Educ. Comput. Sci., vol. 12, no. 1, pp. 18–25,
2020, doi: 10.5815/ijmecs.2020.01.03.

[9] M. M. Askari and V. K. Bardsiri, “Software defect prediction using a
high performance neural network,” Int. J. Softw. Eng. its Appl., vol.
8, no. 12, pp. 177–188, 2014, doi: 10.14257/ijseia.2014.8.12.17.

[10] Ahmed Iqbal etal., “A Feature Selection based Ensemble
Classification Framework for Software Defect Prediction”,
International Journal of Modern Education and Computer Science,
2019.

[11] A. Iqbal et al., “Performance analysis of machine learning techniques
on software defect prediction using NASA datasets,” Int. J. Adv.
Comput. Sci. Appl., vol. 10, no. 5, pp. 300–308, 2019, doi:
10.14569/ijacsa.2019.0100538.

[12] N. Gayatri, S. Nickolas, and A. V Reddy, “Feature Selection Using
Decision Tree Induction in Class level Metrics Dataset for Software
Defect Predictions,” Lect. Notes Eng. Comput. Sci., vol. 2186, no. 1,
pp. 124–129, 2010.

[13] Shyam R. Chidamber and Chris F. Kemerer, “A Metrics Suite for
Object Oriented Design”, IEEE Transactions on Software
Engineering, Vol 20, No.6, June 1994

[14] A. G. Akintola, A. Balogun, F. B. Lafenwa-Balogun, and H. A.
Mojeed, “Comparative Analysis of Selected Heterogeneous
Classifiers for Software Defects Prediction Using Filter-Based
Feature Selection Methods,” FUOYE J. Eng. Technol., vol. 3, no. 1,
pp. 133–137, 2018, doi: 10.46792/fuoyejet.v3i1.178.

[15] S. Bibi, G. Tsoumakas, I. Stamelos, and I. Vlahavas, “Software defect
prediction using regression via classification,” IEEE Int. Conf.
Comput. Syst. Appl. 2006, vol. 2006, pp. 330–336, 2006, doi:
10.1109/aiccsa.2006.205110.

[16] N. Ahmad Alawad and N. Ghani Rahman, “Design of (FPID)
controller for Automatic Voltage Regulator using Differential
Evolution Algorithm,” Int. J. Mod. Educ. Comput. Sci., vol. 11, no.
12, pp. 21–28, 2019, doi: 10.5815/ijmecs.2019.12.02.

[17] H. Wang, T. M. Khoshgoftaar, J. Van Hulse, and K. Gao, “Metric
selection for software defect prediction,” Int. J. Softw. Eng. Knowl.
Eng., vol. 21, no. 2, pp. 237–257, 2011, doi:
10.1142/S0218194011005256.

[18] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect
prediction approaches: A benchmark and an extensive
comparison,”Empirical Softw. Engg., vol. 17, no. 4-5, pp. 531–577,
Aug. 2012.

[19] Arnau V., Marín I. (2003) A Hierarchical Clustering Strategy and Its
Application to Proteomic Interaction Data. In: Perales F.J., Campilho
A.J.C., de la Blanca N.P., Sanfeliu A. (eds) Pattern Recognition and
Image Analysis. IbPRIA 2003. Lecture Notes in Computer Science,
vol 2652. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-
540-44871-6_8.

Authorized licensed use limited to: California State University Fresno. Downloaded on July 01,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

		2021-06-03T09:40:36-0400
	Preflight Ticket Signature

